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Abstract: In many of the natural and physical sciences, measurements are directions,
either in two or three dimensions. The analysis of directional data relies on specific
statistical models and procedures, which differ from the usual models and methodologies
of Cartesian data. This article briefly introduces statistical models and inference for this
type of data. The basic von Mises–Fisher distribution is introduced and nonparametric
methods such as goodness-of-fit tests are presented. Further references are given for
exploring related topics.

1 Introduction

This article explores the novel area of directional statistics. In many diverse scientific fields, measurements
are directions. For instance, a biologist may be measuring the direction of flight of a bird or the orientation
of an animal, whereas a geologist may be interested in the direction of the Earth’s magnetic pole. Such
directions may be in two dimensions as in the first two examples or in three dimensions like the last one.
A set of such observations on directions is referred to as directional data (see Directional Data Analysis).
Langevin[1] and Lévy[2] are two pioneering contributions in this area. One of the first statistical analyses
of directional data is Fisher[3].

A two-dimensional direction is a point in ℝ2 without magnitude, for example, a unit vector. It can also
be represented as a point on the circumference of the unit circle centered at the origin, denoted S1, or as
an angle measured with respect to some suitably chosen “zero direction,” that is, starting point, and “sense
of rotation,” that is, whether clockwise or counterclockwise is the positive direction. Because of this cir-
cular representation, observations on two-dimensional directions are also called circular data. Generally,
directions in p ≥ 2 dimensions can be represented by p − 1 angles (akin to the representation of points
on the Earth’s surface by their longitude and latitude when p = 3), as unit vectors in ℝp or as points on
the unit hypersphere Sp−1 = {𝐱 ∈ ℝp|⟨𝐱, 𝐱⟩ = 1}. Consequently, directional data in p dimensions are also
referred to as spherical data.

Directional data have many unique and novel features both in terms of modeling and in their statistical
treatment. For instance, the numerical representation of a two-dimensional direction as an angle or a unit
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vector is not necessarily unique, as the angular value depends on the choice of the zero direction and
the sense of rotation. It is therefore important to determine statistical procedures (e.g., data summaries
and inference), which are “invariant” with respect to any arbitrary choice for the zero-direction and sense
of rotation. Thus, there is no natural ordering or ranking of observations, as whether one direction is
“larger” than the other depends on whether clockwise or counterclockwise is treated as being the positive
direction as well as where the origin is. This makes rank-based methods essentially inapplicable. Finally, as
the “beginning” coincides with the “end” that is, the data is periodic, methods for dealing with directional
data should take special care on how to measure the distance between any two points.

Such distinctive features make directional analysis substantially different from the standard “linear”
statistical analysis of univariate or multivariate data. The need for the described invariance of statistical
methods and measures makes many of the usual linear techniques and measures misleading, if not entirely
meaningless. Commonly used summary measures on the real line, such as the sample mean and variance,
turn out to be inappropriate as do moments and cumulants. Analytical tools such as the moment gen-
erating function (see Moment Generating Function) and other generating functions are also essentially
useless. Many notions such as correlation and regression as well as their statistical measures need to be
reinvented for directional data. Similarly, ideas of statistical inference such as unbiasedness, loss functions,
variance bounds need to be redefined with caution.

All in all, this area of directional data provides an inquisitive reader with many open research problems
and is a fertile area for developing new statistical methods and inferential tools. There is also an opportunity
to develop new and novel applications to problems arising in the natural, physical, medical, and social
sciences.

One can also note that in studying circadian or other rhythms, the circle may be used to represent one
cycle, and the interest may lie in the timing of an event within this cycle, say, for instance, when the body
temperature or the blood pressure peaks within the day. Thus, certain aspects in the study of biological
rhythms provide an important example from biology that can be put into this circular data framework.
Because biological rhythms control characteristics such as sleep-wake cycles, hormonal pulsatility, body
temperature, mental alertness, and reproductive cycles, there has been a renewed interest among med-
ical professionals in topics such as chronobiology, chronotherapy, chronomedicine, and the study of the
biological clock.

This succinct presentation of directional statistics makes readers aware of the limitations of usual linear
statistical methodology. A software for circular data analysis based on R, called CircStats, is freely available.
Books on circular data include those by Batschelet[4], Fisher[3], Mardia and Jupp[5], and Jammalamadaka
and SenGupta[6]. Readers interested in directions in three dimensions can consult the books by Watson[7]

and Fisher et al.[8].

2 Models for Directional Data

Probability distributions for directions in ℝp are presented in this section. A particular attention is given
to the case p = 2 in Section 2.1 and the case p > 2 is overviewed in Section 2.2.

2.1 Circular Distributions

A direction in the plane can be represented in the following equivalent ways: as an angle 𝜃 (in radians for
example), as a point of S1, as a unit vector (cos 𝜃, sin 𝜃) of ℝ2, or as a complex number of unit modulus,
ei𝜃 . We follow the first description and define a circular density as any nonnegative and 2𝜋-periodic real
function integrating to one over any interval of length 2𝜋.
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One can distinguish four main types of circular distribution: (i) wrapped distributions, (ii) offset dis-
tributions, (iii) distributions derived from stereographic projections and (iv) distributions resulting from
theoretical characterizations.

(i) Concerning wrapped distributions, let Z be a ℝ-valued random variable with density g, then
X = Z mod 2𝜋 corresponds to “wrapping” Z around S1. Thus, X has density

f (𝜃) =
∞∑

k=−∞
g(𝜃 + 2k𝜋) (1)

∀𝜃 ∈ ℝ. From periodicity, we can represent any circular density f in terms of its discrete Fourier transform

f (𝜃) = 1
2𝜋

∞∑
j=−∞

𝜑j exp {− ij𝜃}

∀𝜃 ∈ ℝ, the equality being in the ℒ 2-sense, where 𝜑j is the j-th Fourier coefficient, ∀j ∈ ℤ. If f is the
wrapped density (1), then the Fourier coefficients are the characteristic function (see Characteristic Func-
tions) of the linear random variable Z at integer values, that is, 𝜑j = E[exp{i𝑗𝑍}],∀j ∈ ℤ. Gatto and
Jammalamadaka[9] provide methods of inference for wrapped 𝛼-stable distributions, which derive from
the important 𝛼-stable distributions on ℝ. Two well-known members within this class are the wrapped
normal and Cauchy distributions.

(ii) A circular distribution can also be obtained from the directional component of a distribution over
ℝ2. Assume that g is a probability density over ℝ2, then the marginal density given by

f (𝜃) = ∫
∞

0
g(r cos 𝜃, r sin 𝜃)r dr

∀𝜃 ∈ ℝ, is called an offset or projected density, as it corresponds to the radial projection from ℝ2∖{0}
onto S1.

(iii) A third main way of determining circular distributions is to apply a stereographic projection to a
random variable on the real line. This is done by taking X as the point of intersection between the unit
circle centered around (0, 1) and the straight line connecting the top of the circle with the random point Z
on the real line. Note that ±∞ on the real line are mapped to X = 𝜋 on this circle.

(iv) Circular distributions can also be deduced from important theoretical properties or characteriza-
tions. The well-known von Mises (vM) distribution, also called the circular normal distribution, possesses
many important properties. It has density

f (𝜃 ∣ 𝜇, 𝜅) = 1
2𝜋I0(𝜅)

exp {𝜅 cos(𝜃 − 𝜇)} (2)

∀𝜃 ∈ ℝ, 𝜇 ∈ [0, 2𝜋), 𝜅 ≥ 0 and where Ir(z) = (2𝜋)−1 ∫ 2𝜋
0 cos r𝜃 exp{z cos 𝜃}d𝜃,∀z ∈ ℂ (which is the mod-

ified Bessel function of integer order r, see for example, Abramowitz and Stegun[10], p. 376).
The generalized von Mises (GvM) distribution has density

f (𝜃 ∣ 𝜇1, 𝜇2, 𝜅1, 𝜅2) =
1

2𝜋G0(𝛿, 𝜅1, 𝜅2)
exp{𝜅1 cos(𝜃 − 𝜇1) + 𝜅2 cos 2(𝜃 − 𝜇2)} (3)

∀𝜃 ∈ ℝ, 𝜇1 ∈ [0, 2𝜋), 𝜇2 ∈ [0, 𝜋), 𝛿 = (𝜇1 − 𝜇2) mod𝜋, 𝜅1, 𝜅2 ≥ 0 and where the normalizing constant is
given by G0(𝛿, 𝜅1, 𝜅2) = (2𝜋)−1 ∫ 2𝜋

0 exp {𝜅1 cos 𝜃 + 𝜅2 cos 2(𝜃 + 𝛿)} d𝜃, see Gatto and Jammalamadaka[11],
who provide the following characterizations.

• The GvM distribution can be re-expressed in the canonical form of the exponential class.
• The GvM distribution maximizes the entropy among all distributions with fixed first and second

trigonometric moments. Shannon’s entropy (see Entropy)

−∫
2𝜋

0
log f (𝜃)f (𝜃) d𝜃
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is an appropriate measure of the uncertainty carried by the circular distribution with density f . This
characterization is relevant in Bayesian statistics (see Bayesian Methods; Bayesian Model Selection),
where partial prior information is available and the most noninformative prior distribution that satis-
fies the known partial prior information is desired. An optimal prior is the solution of the constrained
maximization of the entropy.

• The GvM distribution is the conditional offset distribution of the bivariate normal (see Bivariate Nor-
mal Distribution). A conditional offset distribution is the conditional distribution of the directional
component given a fixed length from the origin.

The vM distribution (2) is clearly a special case of the GvM distribution (3) and therefore it shares these
characterizations. The GvM density (3) provides a very flexible model that allows for bimodality and for
various asymmetric shapes. In fact, the GvM density can have more than two cosines in the exponent, see
Gatto and Jammalamadaka[11]. Various other types of models can be found in the literature. However, their
use for data analysis should be judged also by the availability of relevant sampling theory for inference.

2.2 Directional Distributions

Directions in ℝp can be represented by the unit vector x ∈ Sp−1, which can be re-expressed by angular
coordinates by the transform x = (x1, … , xp) = g(𝜃1, … , 𝜃p−1) which, for p ≥ 3, is given by

x1 = sin 𝜃1 sin 𝜃2 … sin 𝜃p−2 cos 𝜃p−1

x2 = sin 𝜃1 sin 𝜃2 … sin 𝜃p−2 sin 𝜃p−1

⋮ ⋮

xp−1 = r sin 𝜃1 sin 𝜃2

xp = cos 𝜃1

where 0 ≤ 𝜃i ≤ 𝜋, for i = 1, … , p − 2, and 0 ≤ 𝜃p−1 < 2𝜋. For p = 3, 𝜃1 is the co-latitude and 𝜃2 is the
longitude.

A popular model for directional data is the von Mises–Fisher (vMF), which is due to Langevin[1] and
which was rediscovered by von Mises[12]. The density toward any p-dimensional direction x is given by

f (𝐱|𝝁, 𝜅) = Cp(𝜅) exp{𝜅⟨𝐱,𝝁⟩} (4)

where𝝁 ∈ Sp−1 denotes the mean direction. It can be checked that the normalizing constant Cp(𝜅) is given
by

Cp(𝜅) =
𝜅

p
2 −1

(2𝜋)
p
2 I p

2 −1(𝜅)

If the density is given with respect to the uniform distribution on Sp−1, then the normalizing constant
becomes Cp(𝜅)ap, where ap = 2𝜋p∕2∕Γ(p∕2) is the surface area of Sp−1,Γ denoting the gamma function.
The vM distribution corresponds to the case p = 2 and the sampling properties of the case p = 3 were
discussed by Fisher[13].

The sampling distribution of the resultant vector
∑n

i=1 𝐱i, which is a complete and sufficient statistic,
can be easily obtained and so inference on 𝝁 and 𝜅 can be relatively easily handled. The vMF distribu-
tion possesses essentially the same theoretical properties of the vM distribution, including an analogous
information theoretic characterization. We can also mention the rotational invariance: if 𝐀 ∈ ℝp×p is an
orthogonal matrix, then f (𝐀𝐱|𝐀𝝁, 𝜅) = f (𝐱|𝝁, 𝜅),∀𝐱,𝝁 ∈ Sp−1 and 𝜅 ≥ 0. Finally, an interesting proba-
bilistic characterization is that the first exit point from Sp−1 of the drifted Wiener process on ℝp starting
at the origin is vMF distributed, see Gatto[14] and references therein.
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3 Nonparametric Tests for Circular Data

The vM distribution is often considered as central as the normal distribution for linear data, even
though there is not an analogous asymptotic rationale for invoking it. In this context, nonparametric or
distribution-free inference (see Distribution-Free Methods) becomes very important with directional
data. Section 3.1 presents goodness-of-fit tests and Section 3.2 presents two-sample tests of equality of
distributions.

3.1 One-Sample Goodness-Of-Fit Tests

Let X1, … ,Xn be independent circular random variables with common circular probability distribution
PX . The goodness-of-fit problem involves testing that the sample arises from a specified directional distri-
bution Q, that is,

H0 ∶ PX = Q

One can distinguish three main categories of goodness-of-fit tests: (i) those based on grouping data,
(ii) those based on the empirical distribution function (e.d.f.) and (iii) those based on the gaps between
successive points, called spacings. As mentioned in the introduction, there is generally no prescribed null
direction or sense of rotation. These attributes are arbitrarily fixed and invariant inference with respect to
these arbitrary choices is desired. Let us denote by𝒢 the transformation group [0, 2𝜋)n → [0, 2𝜋)n consist-
ing of all changes of origin and of the two changes of sense of rotation. The test statistic T ∶ [0, 2𝜋)n → ℝ
is 𝒢-invariant, if T(X1, … ,Xn) = T(g(X1, … ,Xn)),∀g ∈ 𝒢 .

(i) Tests based on grouping data such as the chi-square and the likelihood ratio tests, depend on cir-
cular partitions of [0, 2𝜋) into cells, which in turn depend on the choice of the null direction and of the
sense of rotation. Consequently, they are not directly applicable to circular data. Chi-square tests that are
𝒢-invariant are considered in Ajne[15] and Rao[16]. Rao[16] considers the average of 𝜒2 over all possible
choices of the zero direction, to obtain an invariant version of it.

(ii) For the same invariance consideration, tests based on the e.d.f., such as the Kolmogorov–Smirnov or
the Cramér–von Mises tests (see Cramér-von Mises Statistic), are not directly applicable to circular data.
Let us fix an arbitrary origin and sense of rotation. Then, we can define the e.d.f. of this circular sample
as in the linear case, that is, by F̂n(𝜃) = n−1 ∑n

i=1 I{Xi ≤ 𝜃},∀𝜃 ∈ ℝ, where I{A} denotes the indicator of
statement A. This e.d.f. clearly depends on the choice of this origin as well as whether clockwise or coun-
terclockwise is taken as the positive direction. The Kolmogorov–Smirnov and Cramér–von Mises test
statistics were modified so as to make them 𝒢-invariant by Rao[16], Kuiper[17], and Watson[18].

The one-sided Kolmogorov–Smirnov test statistics are given by

D+
n =

√
n sup

𝜃∈[0,2𝜋)
{F̂n(𝜃) − F(𝜃)}

and
D−

n =
√

n sup
𝜃∈[0,2𝜋)

{F(𝜃) − F̂n(𝜃)}

where F denotes the circular distribution function of PX . The two-sided Kolmogorov–Smirnov statistic is
then given by √

n sup
𝜃∈[0,2𝜋)

|F̂n(𝜃) − F(𝜃)| = max{D+
n ,D−

n }

By noticing that D+
n gains (or loses) just as much as D−

n loses (or gains) due to a rotation, Kuiper[17] suggested
the statistic

D+
n + D−

n
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A classical alternative e.d.f.-based goodness-of-fit test on the real line is provided by the Cramér–von
Mises test, given by

n∫
∞

−∞
(F̂n − F)2 dF

Watson[18] provided the 𝒢-invariant modification defined by

∫
2𝜋

0

{
(F̂n − F) − ∫

2𝜋

0
(F̂n − F) dF

}2

dF

We can note that the Cramér–von Mises statistic can be thought of as the second moment of F̂n − F and
Watson’s statistic is similar to the expression for the variance, so that a variation of F̂n − F due to a change
of origin has no influence on it.

(iii) The third category of tests is the one based on spacings. Ordering the sample with respect to a
given zero direction and sense of rotation yields 0 ≤ X(1) ≤ … ≤ X(n) < 2𝜋. The spacings are the n random
variables defined by

Di = X(i) − X(i−1), for i = 1, … , n, where X(0) = X(n) − 2𝜋

Thus, D1 is the gap between the first and last ordered values that straddle the origin. The spacings form a
maximal 𝒢-invariant, so that every 𝒢-invariant statistic can be expressed in terms of spacings. The one-
sample goodness-of-fit problem can be converted into one of testing uniformity, just as one does on the
real line, as long as the proposed test statistic is 𝒢-invariant. We are thus lead to test uniformity, under
which the spacings become n exchangeable random variables with mean n−1.

Rao[19] defines the circular range by 2𝜋 − maxi=1,… ,nDi, which corresponds to the shortest arc-length
that contains the sample. Small values of it indicate clustering and lead to rejection of uniformity.

Generally, one considers spacing statistics of the form
n∑

i=1
h(nDi)

for a real-valued function h satisfying some regularity conditions. Typical examples are h(x) = xr , for r > 0
and r ≠ 1, where the case r = 2 is called Greenwood Statistic, h(x) = log x and Rao’s test, h(x) = |x − 1|∕2
(see Circular Data, Rao’s Spacing Test for).

3.2 Two-Sample Tests

Two circular samples can be compared using two-sample versions of Kuiper’s and Watson’s tests, among
others, or using tests based on the “spacing-frequencies” defined below. Let X1, … ,Xm be independent
with common circular probability distribution PX and let Y1, … ,Yn be independent with common circular
probability distribution PY . The two samples are independent. The null hypothesis is that the two samples
arise from the same model, that is

H0 ∶ PX = PY

Let X(1) ≤ … ≤ X(m) denote the circularly ordered values X1, … ,Xm, for a given origin and sense of rota-
tion. The spacing-frequencies are given by

Sj =
n∑

i=1
I{Yi ∈ [X(j),X(j+1))} for j = 1, … ,m − 1, and Sm = n −

m−1∑
j=1

Sj

They count the number of Y -values that lie in-between successive gaps made by X(1), … ,X(m).
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Let us now denote by 𝒢 the transformation group [0, 2𝜋)m+n → [0, 2𝜋)m+n consisting of
all changes of origin and senses of rotation, now for the two samples. The two-sample test statistic
T ∶ [0, 2𝜋)m+n → ℝ is 𝒢-invariant, if T(X1, … ,Xm,Y1, … ,Yn) = T(g(X1, … ,Xm,Y1, … ,Yn)),∀g ∈ 𝒢 .
Obviously, (S1, … , Sm) is not 𝒢-invariant: if we change, for example, the zero direction, then the new
spacing-frequencies are obtained by a permutation of the original ones. If however T is a symmetric
function of S1, … , Sm, then T is 𝒢-invariant. Thus, the popular nonparametric Wilcoxon test statistic,
which takes the nonsymmetric form

∑m
k=1 kSk , is inadequate for circular data.

Holst and Rao[20] consider the class of test statistics
m∑

j=1
h(Sj)

where h ∶ {0, … , n} → ℝ satisfies certain regularity conditions. Two important examples are the Dixon
test, with h(x) = x2, and the Wald–Wolfowitz run test, with h(x) = I{x > 0}.

Note that reverting the roles of the X- and Y -samples in the construction of the spacing-frequencies
yields a set of dual spacing-frequencies. However, because these dual values can be obtained as a one-to-
one function from the original spacing-frequencies and conversely, the tests can be based on either set of
spacing-frequencies.

4 Other Topics

There are several other important topics of directional statistics and we briefly mention two of them.
There are several important higher dimensional extensions of directional models. One can consider two

or more directional variables simultaneously, or directional variables in conjunction with linear variables.
For instance, models for bivariate circular data have the torus S1 × S1 as their sample space, whereas one
circular variable and one linear variable take their values on the surface of a cylinder S1 ×ℝ (see Cylindri-
cal Data). Questions of modeling, correlation, and regression (see Spherical Regression) in such a context
are discussed in Fisher[3], Chap. 6, Mardia and Jupp[5], Chap. 11, and Jammalamadaka and SenGupta[6],
Chap. 8.

Next, robust statistical procedures (see Robust Estimation) are also important with directional data.
The influence function has a central role in the analysis of robustness. It is the ratio of the infinitesimal
bias of a statistic resulting from an infinitesimal contamination of the model under consideration, over
the amount of infinitesimal contamination (see Influence Functions). Because Sp−1 is compact, the mean
and the median directions appear quite robust, see for example, Wehrli and Shine[21]. However, one can
object that a small value of the influence function should not neglected when it is substantially larger
than the standard deviation of the estimator. With this in mind, Ko and Guttorp[22] suggested the use of
standardized influence functions and showed that they can be very large when computed for the mean
direction under various directional distribution.

The spherical median of 𝐗1, … ,𝐗n, Sp−1-valued, can be defined as the value t ∈ Sp−1 minimizing the
sum of arc-lengths

n∑
i=1

arccos⟨𝐗i, t⟩
Generalizing on this form, the M-estimator of the mean direction (see M Estimators of Location) is
defined by t ∈ Sp−1 minimizing

n∑
i=1

𝜌(⟨𝐗i, t⟩)
for some appropriate function 𝜌, see for example, Lenth[23] and Ko and Chang[24].
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Estimators of the concentration parameter 𝜅 of the vMF distribution (4) can be found, for example,
in Ducharme and Milasevic[25] and Ronchetti[26]. A more detailed review on robustness can be found in
Mardia and Jupp[5], Sect. 12.4.
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